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Synchronization in the Kuramoto model: A dynamical gradient network approach
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We propose a dynamical gradient network approach to consider the synchronization in the Kuramoto model.
Our scheme to adaptively adjust couplings is based on the dynamical gradient networks, where the number of
links in each time interval is the same as the number of oscillators, but the links in different time intervals are
also different. The gradient network in the (n+ 1)th time interval is decided by the oscillator dynamics in the
nth time interval. According to the gradient network in the (n+ 1)th time interval, only one inlink’s coupling for
each oscillator is adjusted by a small incremental coupling. During the transition to synchronization, the
intensities for all oscillators are identical. Direct numerical simulations fully verify that the synchronization in
the Kuramoto model is realized effectively, even if there exist delayed couplings and external noise.
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In the past decades, the synchronization in complex net-
works has been a research topic in many fields [1-14].
Among many models that have been proposed to address
synchronization phenomena, one of the most successful
models is the Kuramoto model (KM) [3,4]. This model can
be used to understand the emergence of synchronization in
networks of oscillators. In particular, this model presents a
second-order phase transition from incoherence to synchro-
nization. For the synchronization on the KM, many works
assumed that the couplings are constant [6-9]. Recently,
some works introduced the time-varying couplings in the
KM. Maistrenko et al. introduced the mechanism of plastic-
ity in the KM to study the multistability, and assumed that
the couplings are varied in accordance with the spike timing-
dependent plasticity [14]. Ren and Zhao also proposed one
time-varying coupling scheme by introducing continuously
adaptive couplings, and this can enhance the synchronization
in the KM. In their scheme, the couplings grow stronger for
the pairs which have larger phase incoherence [5].

In this Brief Report we also consider the synchronization
in the KM by introducing a dynamical gradient network
(GN) approach. This study is motivated in part by the work
[15,16], where the concept of GNs is introduced. GNs are
directed subnetworks of an undirected ““substrate” network in
which each oscillator has an associated scalar potential and
one outlink that points to the oscillator with the smallest (or
largest) potential in the reunion of itself and its neighbors on
the substrate network. The existence of gradients has been
shown to play an important role in biological transport pro-
cesses, such as cell migration [17]: chemotaxis, haptotaxis,
and galvanotaxis. Naturally, the same mechanism will gener-
ate flows in complex networks as well [16]. In addition, GNs
have been already utilized to enhance synchronization in
complex networks [12]. A general weighted asymmetrical
network is regarded as a superposition of a weighted sym-
metrical network and a weighted GN. Depending on degrees
of oscillators, a weighted coupling scheme is proposed to
enhance the synchronizability in networks. However, the
proposed GN is static, which means its structure is time in-
dependent.

Differing from the static GN in Ref. [12], the GNs devel-
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oped in this Brief Report are dynamical, which means that
the GNs in different time intervals are different. Here the
KM consists of a population of N coupled oscillators where
the phase 6(r) of the ith oscillator evolves in time according
to

d6; . .
E:Wi'i‘z./\iinj Sln(ﬁj—ﬁi), l:1,2,...,N, (1)
J

where w; are natural frequencies distributed with a given
probability density g(w), and A;; is the binary adjacency ma-
trix representing the topology of networks. Further, A;;>0 is
the coupling strength of the inlink (i,/) pointing from oscil-
lator j to oscillator i if they are connected. Denote I'; as the
index set of neighbors of oscillator i.

The KM (1) can be solved in terms of the order parameter
r(r) that measures the extent of synchronization as

N
1
e = 3 el @
Nj=1

where >=—1, W(¢) stands for an average phase, and the pa-
rameter 0=r(r)<1. Obviously, if r(r)=1, the synchroniza-
tion in the KM is realized. The parameter r(r) given by Eq.
(2) has been widely used [3-5,7].

We first segment the time interval [z, %) into

[IO’ e ) = gl[tn—l’tn)’ (3)

where t,=ty+nT, t, is the transient time, and the length 7" of
intervals is chosen suitably. For the parameter r(¢), we define
one local order parameter for oscillator i in the interval
[t,-1.t,) as follows:

4 1ft"
rt=— ri(t)dt, 4)
T 1

n—1

with r,-(t)e”’i(’)=k‘]jEjeriU{,-}e{ 40 where k; is the degree of
oscillator i. The parameter r*" can measure the local syn-
chronization extent among oscillator i and its neighbors. If

rimo=1 for certain ny, oscillator i and its neighbors are locally
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synchronized in the interval [tno_l,t,,o). For the network of
oscillators, the extent of synchronization in our scheme is to
choose the order parameter rq(n) as follows:

I
ro(n) = }f r(t)dt. (5)

n—1

If there is a ng such that r(n,)=1, we conclude that the syn-
chronization in networks is realized.

Here we introduce an adaptive coupling scheme into the
KM. Our idea to adjust the coupling A;; in the interval
[£,,1,.1) is based on the concept of GNs [15,16]. To define a
GN at the instant r=t,, we consider a network denoted by
>=(V,E,), where V stands for the set of oscillators, and E,
denotes the set of links at the instant #=¢,. Consider a field
denoted by h"={h', ... hy} at the instant r=t,, where A! is
the scalar assigned to oscillator i. We define the gradient V
of the field 4! in oscillator i to be the directed link th;

=(i,u?), where u! e I'; represents one neighbor of oscillator
i. At the instant t=t,, the network Egz(V,V,,), where V,, is
the set of the gradients V,», is called a GN. Note that at
different time instants the GNs are also different. In this
Brief Report, this kind of GN is called the dynamical GN. In
the GN 3, o the directed link (i, ) points from oscillator u],
at which the scalar field has the minimum (or maximum)
value in oscillator u} e I';, i.e., [16],

i =arg rlpin '} (6)
Jebi

to oscillator i. If several neighbors have the same scalar field,
we choose only one randomly.

For the parameter (4), we choose the scalar field A} as
K=, (7)

1

In the GN composed of the gradients V,», we adjust the
coupling A, ,» of the inlink (i, u}) pointing from oscillator o
to oscillator i. Denote the coupling A;; in the interval
[t4-151,) as A}

The coupling scheme. In the interval [z,,t,,,), we adap-
tively adjust the coupling A, u of the inlink (i, &) in the GN
2,=(V,V,) by

A= AT L+ €, (8)

i i

where € >0 is arbitrarily small incremental coupling. When

the link (i,j) does not belong to the GN X,, its coupling
satisfies

A= AL )

Now we analyze the feasibility of the above coupling
scheme by the linearized dynamics of the KM. When the
Kuramoto dynamics is close to the attractor, the phase dif-
ferences are small, and then the sine coupling function can
be approximated linear. Therefore, in the interval [1,,,7,,;),
the linearized dynamics of oscillator i can be written in the
form
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In the above equation the last term £(6,,»— 6,) is equivalent to
the term —g(6;— 0,,1), which can be regérded as the negative
feedback term for the unidirectional synchronization from
oscillator u to oscillator i. This could make the phase dif-
ference between oscillator i and its neighbor u! be smaller,
which may make the synchronization in the KM be realized.

The adaptive scheme (8) and (9) can be easily extended to
the KM with delayed couplings and external noise. One case
is the KM described by [3,6]

do;
d_tl =w;+ E A”Al] Sin(ﬁj— 01) + gl(t)’ i= 1,2, ,N, (ll)
J

where &) is the white noise duo to the complicated envi-
ronment, with expectation and variance (&(7))=0,
(&(1)é,(t'))=268,;0(t—1"). Another case is the KM given by
(3]

do,

E =W[+ E AUAU Sin(aj,,.— 61) + gl(t)’ l= 1,2, e ,N,
J

(12)

where the term 6; . represents the delayed phase 6;(t—7), and
T is a constant time delay.

Our simulations are based on scale-free (SF) and small-
world (SW) networks. The SF networks are generated by the
Barabdsi-Albert model [18], where the initial network is a
fully connected network with M oscillators, labeled by i
=1,...,M. At every time step a new oscillator is introduced
to be connected to M existing oscillators. The probability
that a new oscillator is connected to oscillator i depends on
degree k; of oscillator i, namely, I1;=k;/X k;. After repeating
for N—M times, a SF network has a degree distribution
P(k)~k™* and the minimal degree k,;,=M. The SW net-
works are generated by the Newman-Watts model [19],
where the initial network is a nearest-neighbor coupled net-
work consisting of N oscillators arranged in a ring, with os-
cillator i being adjacent to its neighbor oscillators, j
=1,...,K/2, and with K being even. Then one adds with
probability p a connection between a pair of oscillators.

In our simulations, the initial weights for all links are
zero, the natural frequencies of oscillators are uniformly dis-
tributed in the interval [—1,1], the transient time is f;
=100 s, the length of intervals is 7=1, and the incremental
coupling is €=0.01. The solution of networks is resolved
using the Euler method and the time step 2#=0.02 s, and our
ending condition for our scheme is |r(ny)—1] <1072 for cer-
tain ny.

We first simulate the SF networks with N=1000 and the
SW networks with N=1000 and p=0.03 in the absence of
noise. We plot the local order parameter r, as a function of
the adjustment time n [Fig. 1(a)], and the global order pa-
rameter r as a function of the time step m (=n/h) [Fig. 1(b)].
Obviously, due to our coupling scheme (8) and (9), the KM
(1) can be in a synchronized state after several hundreds of
the adjustment steps. In every time interval, only one inlink’s
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FIG. 1. Simulation results in the KM (1) without noise. The
parameter ry(n) as the function of n (a), and the parameter r(z) as
the function of m (b), in the SF networks (solid line, M =3; dotted
line, M=5) and the SW networks (dash-dotted line, K=2, p=0.03;
dashed line, K=4, p=0.03). The adjustment step n as a function of
the size N in networks (c), and standard deviation E(k) as the func-
tion of degree k in the SF and SW networks with N=1000 (square,
M=3; diamond, M =5; star, K=2, p=0.03; circle, K=4, p=0.03).
All estimates are the result of averaging over 50 realizations.

coupling for each oscillator is adjusted by a same small in-
cremental coupling, and the other inlinks’ couplings remain
constant. Hence the intensities S defined by S=3;A;A;; for
all oscillators are identical during the transition to synchro-
nization. From Figs. 1(a) and 1(b), the extent of synchroni-
zation in the KM increases with the increasing of the inten-
sity S given by S=ne. In our coupling scheme, the intensity
S is a good indicator of the synchronization in the KM. At
about n=300, namely, S=3, the KM (1) is practically in a
synchronized state. However, the equal intensities cannot be
ensured by other adaptive coupling schemes [5,10]. The in-
tensities in Ref. [10] strongly depend on heterogeneous de-
grees in the SF networks. The larger the degree of an oscil-
lator is, the larger its intensity is.

We also discuss the synchronization in the SF and SW
networks with different size. Under the same ending condi-
tion, we observe that the adjustment steps needed to synchro-
nize the SF networks with the same M are almost identical
[Fig. 1(c)]. It further means that the time (nyT) needed to
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FIG. 2. Simulation results in the KM (1) with noise. The param-
eter ro(n) as the function of n (a), and the parameter r(7) as the
function of m (b), in the SF networks (solid line, M =4; dotted line,
M=6) and the SW networks (dash-dotted line, K=6, p=0.01;
dashed line, K=8, p=0.01). All estimates are the result of averaging
over 50 realizations.

synchronize the SF networks with the same M is almost
equal. We can also obtain similar results in the SW networks
with the same K and p. The steps in the SW networks with
the same p and a small K are almost identical while the steps
in the SF networks with different M are also different. This
can be in part explained by the average degree (k)=~2M in
the SF networks and (k)=K+(N-1)p/2 in the SW net-
works. When the average degree is smaller, it requires a
longer time to synchronize networks.

After the ending of our scheme (8) and (9), we can also
analyze the relationship between the normalized coupling
matrix G=(G;;) with Gij::—[:gAij and the coupling matrix
G0=(Ai’jA,~j) with Ai’]:l/ k;. We compute the average error
E(k)ztE;’i \E, between G and G, where v, is the number
of oscillators with the same degree k;, and E,
=\Z,2i(G;j=1/k;)*/ k;. We show that G;; is almost identical
to the value 1/k; (or G;;~k;") [Fig. 1(d)]. After the ending of
our scheme, the couplings Agﬂ for the inlinks of oscillator i
are approximately ngpe/k;. Therefore, for the SF networks
with the same M and the SW networks with the same K and
p, the maximal coupling relies on the minimal degree in
networks. The larger the degree of oscillator i is, the smaller
the coupling Ay is.

Even if there exists noise in the KM (1), we can also
obtain similar results in the SF networks with different M
and the SW networks with different K and p [Fig. 2]. For the
KM (12) with delayed couplings, simulation results are plot-
ted in Fig. 3 (7=1) and Fig. 4 (7=3). Here we only plot
figures on the parameters r, and r due to the space limitation.
From these figures, the synchronization can be realized ef-
fectively. Note that there are two parameters 7 and € in our
scheme. Due to the weak coupling on the synchronization in
the KM, the value € in our scheme cannot be large, and the
length T of intervals can be arbitrarily large. In our simula-
tions the value & can be chosen from the interval
[0.0001, 0.02]. For different values of T and &, we can ob-
tain similar results.
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FIG. 3. Simulation results in the KM (12) without noise. The
parameter ry(n) as the function of n (a), and the parameter r(z) as
the function of m (b), in the SF network (solid line, M =4; dotted
line, M=7) and the SW network (dash-dotted line, K=6, p=0.02;
dashed line, K=8, p=0.02). All estimates are the result of averaging
over 50 realizations.

Goémez-Gardefies et al. proposed another order parameter
Fink to measure the extent of synchronization [8], where
rhnk=mEiEjEFJlimAﬁmAl[f;:+Afel[0i(f)‘0j(’)]dt|, where Ny
is the number of links, and ¢, is a large time. The averaging
time A, is taken large enough to obtain good measures of the
degree of coherence between each pair of physically con-
nected oscillators. Egs. (4), (5), and (7) in our scheme
can be replaced by rﬁﬁk:kliEjEpJ = ﬁ:_le’["f(t>‘9./(’)]dt|, (1)
N
Since numerical results are very similar to those with respect
to the parameters 7" and ry(n) (Figs. 1-4), we omit figures
for the space limitation.

In this Brief Report, we introduce an adaptive coupling
scheme in the KM based on the dynamical GN approach.

Olds|, and h'=ri", respectively.
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FIG. 4. Simulation results in the KM (12) with noise. The pa-
rameter ry(n) as the function of n (a), and the parameter r(z) as the
function of m (b), in the SF network (solid line, M =4; dotted line,
M=6) and the SW network (dash-dotted line, K=6, p=0.01; dashed
line, K=8, p=0.01). All estimates are the result of averaging over
50 realizations.

Our scheme can be applied to different variants of the KM.
Compared with the adaptive couplings [5,10], our scheme
has the following merits: (1) In each time interval only one
inlink’s coupling for each oscillator is adjusted by the same
small value, which ensures that the number of inlinks to be
adjusted in each time interval is only N, rather than all in-
links [5,10]. (2) In the (n+1)th time interval, all oscillators
have the same intensities S=ne. However, the adaptive cou-
plings in Refs. [5,10] cannot ensure the equal intensities. (3)
For oscillator i, the inlink to be adjusted in the (n+1)th time
interval is decided by some scalar fields, which depend on
the oscillator dynamics in the nth time interval.
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